A Framework for fake news detection on Social Media: A Probabilistic Reasoning Approach

Presenter: Md. Samiullah, Research Officer, Murdoch Children Research Institute

Problem Definition

Challenges

- Increased consumption of fake news through social media
- Difficult to identify solely by humans
- Human-Technology collaboration is needed

Research Gap

- Very few studies exist using Bayesian Network for fake news identification
- Most of the existing research are based on a single topic as user profile or social context or new content
- A framework of Bayesian Network is not yet available

Solution

- A BN with independent modules of the Bayesian network will give the combined effect of
 - user profile,
 - social content and
 - news content features
- The BN framework is modifiable and extendable with further findings or expert elicitation.

Literature

- Fake news detection using naive Bayes classifier with only support count [1]
- The correlation between user profiles and fake/real news [2]
- Various features for automatic detection of fake news presented [3]
- Al and ML techniques are used to implement binary classification of different news content as well as to verify credibility of some news website [4]
- A comprehensive overview of negative impact of online fake news with features of users, content, and context for classifying fake news. [5]
- A new set of features and the prediction performance measure for automatic detection of fake news. [6]

Literature ...

- A comprehensive survey of fake news detection methods along with the identification of datasets and various artificial intelligent methods [7]
- A probabilistic graphical model to automatically infer true records and source quality without any supervision. [8]
- The social and computer science research regarding belief in fake news and the mechanism by which it spreads. [9]
- Assessing the credibility of a given set of tweets. Specifically, analysis of microblog postings related to "trending" topics, and classify them as credible or not credible, based on features extracted from them. [10]

Limitations of existing studies

- Deterministic approaches
 - Most of the studies use ML models to classify a news as true or false, rather than providing a probabilistic reasoning.
 - The studies on probabilistic approaches mainly use Naive Bayes algorithm.
- Scope for adding new information
 - In case of the previous studies, it is difficult to add new information or existing knowledge to the proposed approaches.

Objectives

- To detect fake news on social media platforms in order to mitigate the spread of false information.
- To develop a framework for fake news detection that can be
 - Modified or expanded.
 - Enriched and validated by experts
- To create scope for incorporating expert elicitation or existing knowledge in

future.

A probabilistic framework

- Query based framework
 - The framework follows the approach of asking questions like humans.
 - Several questions can be asked e.g., Who is the source of the news? What is the news about etc.
 - Each question acts as a module consisting of several features.
 - Several states are added for each module determined by these features.
- Bayesian network framework
 - A BN framework is developed based on the "questions" where the news authenticity will be conditionally dependent on the questions.
 - News authenticity is the query node, and the probability of the states is determined based on the provided evidence and the obtained posterior.

3W approach : Introduction

- 3W approach is a solution for detecting fake news based on the proposed probabilistic framework.
 - 3W stands for 3 questions beginning with 'W' -> Who, What and When.
 - The three questions will be asked about a news in order to determine its credibility
- Why we choose 3W approach ?
 - These three questions are the important parts of a news on which its credibility is dependent.
 - Features to deal with these questions are handy in existing datasets.
 - No other existing approaches has used the combination of the features based on the three questions.

3W approach : Modules

Module	Description	
Who? Who are responsible in spreading the news?	 The credibility of the user posting information about the news The credibility of the original or referred URL mentioned in the post 	
What? What is in the news? What are people talking about the news?	 News post content The credibility of the original or referred URL mentioned in the post User sentiments 	
When? <i>Temporal information about the</i> <i>news</i>	 Contemporary information from other posts in the same social media Contemporary external knowledge 	

Table 1 : Modules for 3W approach.

3W approach : Feature list

Who module	What module	When module
domain_name has_author website_age is_credible_site registration_age tweet_count same_topic_tweet_count follower_count followee_count is_verified has_description	Similarity with headline # of characters # of words Flesch index # of '?' # of '?' # of uppercase letters # of uppercase letters # of emoticons # of emoticons # of external urls # of favorites # of favorites # of favorites # of retweets # of retweets # of retweets # of hashtags tweet_sentiment comment_sentiment	contains_trending_topics contains_trending_hashtags contains_google_trending_topics contemporary_other_tweets_opinion contemporary_other_social_media_o pinion

Table 1 : Features used in 3W approach.

3W approach : Bayesian Network

- Each modules has a node (last level or child or output node)
 - Each node has two states High (H) and Low (L).
- News authenticity as query node
 - News authenticity have two states True (T) and Fake (F).
 - The probability of the states is determined by the evidence (states of the three modules.)
- Conditional probability table
 - The conditional probabilities of all combinations of the three states and news authenticity state are estimated from dataset (explained in next slides).

3W approach : Bayesian Network Model

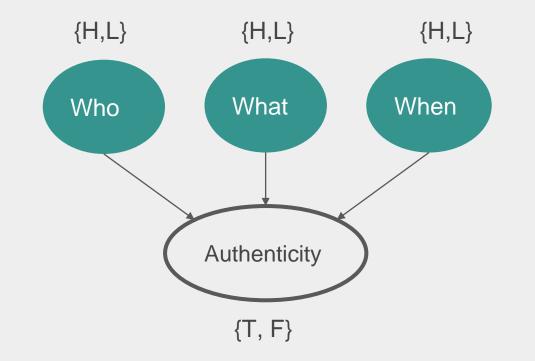


Figure 1 : 3W Bayesian Network (high-level view).

3W approach : Process

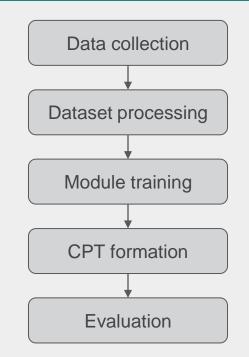


Figure 2 : Procedure steps.

References

- 1. Granik, Mykhailo, and Volodymyr Mesyura. "Fake news detection using naive Bayes classifier." 2017 IEEE first Ukraine conference on electrical and computer engineering (UKRCON). IEEE, 2017.
- 2. Shu, Kai, Suhang Wang, and Huan Liu. "Understanding user profiles on social media for fake news detection." 2018 IEEE conference on multimedia information processing and retrieval (MIPR). IEEE, 2018.
- 3. Reis, Julio CS, et al. "Supervised learning for fake news detection." *IEEE Intelligent Systems* 34.2 (2019): 76-81.
- 4. Kumar, Vinit, et al. "Fake News Detection using Machine Learning and Natural Language Processing." 2021 International Conference on Technological Advancements and Innovations (ICTAI). IEEE, 2021.
- 5. Zhang, Xichen, and Ali A. Ghorbani. "An overview of online fake news: Characterization, detection, and discussion." Information Processing & Management 57.2 (2020): 102025.
- 6. Reis, Julio CS, et al. "Supervised learning for fake news detection." *IEEE Intelligent Systems* 34.2 (2019): 76-81.
- 7. Narang, Poonam, and Upasana Sharma. "A Study on Artificial Intelligence Techniques for Fake News Detection." 2021 International Conference on Technological Advancements and Innovations (ICTAI). IEEE, 2021
- 8. Zhao, Bo, et al. "A bayesian approach to discovering truth from conflicting sources for data integration." *arXiv preprint arXiv:1203.0058* (2012).
- 9. Lazer, David MJ, et al. "The science of fake news." *Science* 359.6380 (2018): 1094-1096.
- 10. Castillo, Carlos, Marcelo Mendoza, and Barbara Poblete. "Information credibility on twitter." *Proceedings of the 20th international conference on World wide web.* 2011.

Any Questions

